Турбомолекулярный насос: история создания, анализ молекурярных и турбонасосов, эксплуатация насосов ТМН и сухих вакуумных насосов

0
4481
Турбонасос

Турбомолекулярный насос (ТМН) относится к специальным насосам, позволяющим создавать и длительное время поддерживать глубокий вакуум, порядка от 10-2 до 10-8 Па. Представляет интерес этимологическое значение названия насоса. Приставка “турбо-” является сокращенным вариантом, введенным в технический лексикон с 1900 года, термина “турбина”. Эти оба слова пошли от франц. “turbine” — “турбина”, а ранее от лат. “turbo”, означавшего “привести в беспорядок, возмутить, вихрь, волчок”. Вторая часть первого слова “- молекулярный” произошла от лат. “molecula” — “часть, частичка”, как уменьшительное от “moles” — “масса, глыба, громада”. Следующий термин “насос” является исконно нашим, славянским, так как преобразовался от староправославных слов «сосать, съсати, съсъ», означавших «сосать грудное молоко», «обсасывать мозговые косточки», «вытягивать жидкость».

В данной статье мы рассмотрим:

  • турбомолекулярный насос pfeiffer;
  • турбомолекулярный насос agilent tv81m;
  • высоковакуумный турбомолекулярный насос twistorr 84 fs;
  • турбомолекулярный насос tg350f;
  • блок питания турбомолекулярных насосов типа бп 267;
  • турбомолекулярный насос принцип работы;
  • молекулярный вакуумный насос;
  • молекулярный насос mdp 5011 цена;
  • купить турбонасос;
  • турбонасос цена;
  • недостатки турбонасосов;
  • турбомолекулярный насос тмн 500;
  • насос тмн 200;
  • сухой насос;
  • безмасляный вакуумный насос;
  • безмасляные форвакуумные насосы;
  • вакуумный насос сухого типа;
  • безмасляный пластинчато роторный вакуумный насос;
  • вакуумный поршневой безмасляный насос;
  • форвакуумный насос 2нвр 5дм.

Навигация по разделу:

  1. Турбомолекулярный насос
  2. История создания молекулярных насосов
  3. Молекулярный насос
  4. Турбонасос
  5. Насос ТМН
  6. Сухой вакуумный насос
  7. Форвакуумный насос

История создания молекулярных насосов

В 1913 году немецкий ученый Вольфганг Геде опубликовал в журнале «Annalen der Physik» описание нового вакуумного насоса, для работы которого были использованы законы молекулярно-кинетической теории перемещения газов. С целью экспериментальной проверки он изготовил первый вакуумный молекулярный насос с минимальным зазором 0,1 мм между ротором, вращающимся со скоростью около 8000 об/мин, и неподвижным статором. Было получено разрежение газа до 10-4 мм ртутного столба. Новый насос даже начал выпускаться немецкой фирмой «Leybold’s Nachfolgers», но большого распространения не получил. Во-первых, в нем не было экстренной потребности, а во-вторых, мешали технологические затруднения с изготовлением таких малых зазоров. Попадание в насос вместе с газом макроскопических твердых частичек (камешков, щепок, стекла) приводило к заклиниванию ротора.

История создания молекулярных насосов
В конце 1950-х годов интерес к молекулярным насосам возобновился

Только в конце 50-х годов прошлого столетия интерес к молекулярным насосам возобновился, когда немецкий инженер В. Беккер изобрел турбомолекулярный вакуумный насос Pfeiffer с большим числом лопастных дисков на валу и с увеличенными зазорами, порядка 1 мм. Этот насос запатентовала в 1957 году компания Pfeiffer Vacuum. Далее устройство и принцип действия насосов ТМН продолжали совершенствоваться, появились такие конструкции как турбомолекулярный насос Agilent TV 81M и новейший (2015 год) высоковакуумный турбомолекулярный насос Twistorr 84 FS итальянской фирмы Agilent Technologies, гибридный турбомолекулярный насос TG 350F японской компании Osaka Vacuum и другие. При этом часто узлы данных устройств являются  взаимозаменяемыми. Например, блок питания турбомолекулярного насоса типа БП-267 может использоваться для насосов моделей НВТ-340, НВТ-950, 01АБ-450, 01АБ-1500.

Молекулярный насос

В молекулярном насосе откачивание газовой среды осуществляется за счет сообщения молекулам вещества механических импульсов энергии от движущихся с высокой скоростью твердых, жидких, газообразных поверхностей насоса. При этом в молекулярном насосе направление перемещения рабочих поверхностей и молекул газа совпадают, а в турбомолекулярном — направления движения рабочих элементов и молекул являются взаимно перпендикулярными.

Молекулярный насос
Изображение молекулярного насоса в разрезе

Молекулярные насосы по принципу действия подразделяются на:

  • механические (роторные и турбинные);
  • эжекторные;
  • пароструйные;
  • газоструйные;
  • водоструйные;
  • диффузионные.

Например, высоковакуумный молекулярный насос MDP 5011 является устройством с механическими рабочими элементами. Перемещение молекул газа к выходному патрубку насоса обеспечивает твердая поверхность ротора-стакана, совершающего 27000 об/мин. Данная модель MDP 5011 является лидером продаж среди турбонасосов. Понятно, вас интересует цена молекулярного насоса MDP5011. Обращайтесь к нам по таким вопросам, звоните, пишите по электронной почте. Проконсультируем и поможем.

Турбонасос

Турбонасос — это насосное устройство с приводом от турбины, узлы и детали которой входят в конструкцию насоса. Различают следующие виды турбонасосов в зависимости от вида перекачиваемой рабочей среды.

Турбонасос
Внешний вид турбонасосов
  1. Турбонасосы для перекачивания жидкостей.
  2. Турбонасосы для перекачивания суспензий.
  3. Турбонасосы для перекачивания газов.

К недостаткам турбонасосов относятся сложность конструкции, длительные простои при ремонте насоса или турбины, высокая стоимость. Поэтому при необходимости купить масляный турбонасосТМН-6/20, естественно, возникает вопрос, какая цена турбонасоса. Если она вас не устраивает в других фирмах, приходите к нам.

Насос ТМН

Турбомолекулярные насосы ( тмн) выполнены в виде многоступенчатых осевых турбин, которые обеспечивают достижение среднего, высокого и сверхвысокого вакуума. Особая конструкция роторных и статорных ступеней турбины, в которых выполнены наклонные каналы, размещенные зеркально друг другу, позволяет эффективно откачивать молекулы газа вследствие разной вероятности прохождения молекул через расположенные под углом каналы в направлении откачки и подачи. ТМН закрепляются на массивном основании через амортизаторы, что уменьшает вибрацию в процессе откачки.

Насос ТМН
Внешний вид турбомолекулярного вакуумного насоса ТМН-500

Принцип работы турбомолекулярного насоса заключается в следующем. Энергия лопастей турбины, вращающихся с высокой частотой, передается молекулам газа. Последние сталкиваются с поверхностями лопастей, доли секунды перемещаются вместе и отлетают по касательной к вращающейся турбине. Происходит суммирование кинетической энергии лопастей с тепловой энергией движущихся частиц газа. Хаотичное движение молекул превращается в ускоренное перемещение в заданном направлении откачки. Такое эффективное действия ротора возможно только при режиме молекулярного потока газа, который создается дополнительным форвакуумным насосом низкого давления.

Неплохое впечатление производят отечественные двухпоточные безмасляные насосы: турбомолекулярный вакуумный насос ТМН-500 и насос ТМН-200 с производительностью 500 и 200 л/сек, соответственно. Конечно, по качеству сборки и дизайнерскому оформлению они уступают зарубежным аналогам. Но при невысокой стоимости характеризуются надежностью в работе, безотказностью и достаточной долговечностью.

Сухой вакуумный насос

Сухой вакуумный насос (безмасляный) работает аналогично, как и масляный. Но в насосе сухого типа не применяется масло для смазки трущихся деталей, и отсутствуют уплотнительные устройства. Поэтому в качестве материала лопаток сухих насосов используется не металл, а графитовый композиционный материал. Графитовые лопасти дешевле металлических из титана, алюминия, нержавеющей стали, характеризуются менышим коэффициентом трения и надежно герметизируют камеру насоса.

Сухой вакуумный насос
Внешний вид сухого вакуумного насоса

Преимущества вакуумного безмасляного насоса:

  • отсутствие паров масла при выходе воздуха из насоса, рабочее место становится чистым, улучшается экология окружающей среды;
  • не нужно закупать и заливать дорогостоящее масло, следить за его уровнем и загрязнением;
  • более низкая стоимость.

Недостатки сухого насоса:

  • глубина создаваемого вакуума ниже, чем у маслоуплотняемых насосов;
  • долговечность графитовых лопастей значительно меньше, чем металлических;
  • продукты износа в виде пылевидного графита попадают в атмосферу.

Однако, специалисты считают, что за безмасляными вакуумными насосами будущее. И уже сейчас стараются купить безмасляный пластинчато-роторный вакуумный насос, безмасляный поршневой вакуумный насос, безмасляный форвакуумный насос, не обращая внимания на их цену. Так как более простая и дешевая эксплуатация сухого насоса окупит все начальные затраты.

Форвакуумный насос

Форвакуумный насос является устройством для создания начального разрежения газовой среды — форвакуума (от нем. «vor» — «перед, впереди» вакуума и лат. » vacuus» — «пустой»). Принцип работы заключается в том, что форвакуумный насос устанавливается как первая ступень в системе насосов, создающих высокий и сверхвысокий вакуум. Обеспечивает экономию электроэнергии и улучшает возможности эксплуатации следующего насоса высокой ступени.

Наиболее подходит для этого отечественный пластинчато-роторный форвакуумный насос 2НВР-5ДМ, предназначенный как для создания низкого и среднего вакуума самостоятельно, так и в качестве вспомогательного насоса.

Форвакуумный насос
Внешний вид форвакуумного насоса 2НВР-5ДМ

Если вас заинтересовали описанные турбомолекулярные и форвакуумные насосы из ассортимента нашей компании, можете получить более подробную информацию у консультантов. Наши высококвалифицированные специалисты помогут в выборе оптимального варианта насосов, объяснят условия покупки, эксплуатации и сервиса, обоснуют цены. Окажут вам помощь в подборе запасных частей и вспомогательных материалов, например таких, как лопатки к безмасляным насосам Becker,масло для форвакуумного насоса и других. Звоните по нашим телефонам или свяжитесь по E-mail. Будем рады вам помочь.